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In our experiments, we investigate in situ the growth of three-dimensional xenon crystals into an under-
cooled pure melt. Experimental studies have been extended from undisturbed growth conditions to more
realistic growth conditions. Methods to characterize the transient growth of sidebranches of dendrites have
been developed. Two types of sidebranches have been identified: Sidebranches initiated by selective amplifi-
cation of thermal noise �type N� and sidebranches induced by macroscopic perturbations �type P�. Type N
sidebranches start to grow 3–7 tip radii behind the tip and are not correlated at the four fins. It has been verified
that the sidebranch amplitude grows exponentially to z2/5 as predicted by Brener and Temkin �E. Brener and D.
Temkin, Phys. Rev. E 51, 351 �1995��. Type P sidebranches are initiated by macroscopic perturbations. They
start to grow at the tip and their amplitudes are significantly higher than the ones of type N sidebranches. The
growth of type P sidebranches is symmetric at the four fins. The tip positions of type P sidebranches separate
from the tip shape of a dendrite at a distance of about 5R from the tip, while for type N sidebranches this
distance is about 10R.
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I. INTRODUCTION

Pattern formation is a complex process with some techno-
logical importance. Almost all alloys solidify dendritically.
The solid is composed of tiny dendritic crystals stuck to-
gether. The microscopic structures formed during solidifica-
tion strongly influence mechanical, chemical, and electrical
properties �toughness, brittleness, electrical conductivity,
corrosion behavior, etc.� of the final product. The under-
standing of solidification of metals is therefore of great tech-
nological and practical importance, as well as of fundamental
interest for all fields where pattern formation from meta-
stable phases at nonequilibrium conditions is studied.

Solidification is a first order phase transition where latent
heat is set free at the solid-liquid interface. The initial tem-
perature T� of the melt at the beginning of growth is below
the thermodynamic equilibrium melting temperature Tm. The
undercooling �T is defined by �T�Tm−T��0. In dimen-
sionless units it is given by ���T / �L /cp,l�, with L the latent
heat and cp,l the specific heat of the melt per unit volume.
During solidification the temperature of the melt close to the
surface of the crystal is near Tm, while farther away from the
crystal the temperature is still at the initial temperature T�.
The growth rate of the solidification process is governed by
�i� the transport of heat and atoms from or to the solid-liquid
interface by diffusion and convection, and �ii� by interfacial
properties such as the solid-liquid interfacial free energy, the
surface stiffness and surface kinetics, as well as their
anisotropies. The physical framework of dendritic solidifica-
tion is given in Sec. II.

Most metallic materials used in industrial applications are
alloys where constitutional undercooling leads to an unstable
solid-liquid interface during solidification. Reproducible
conditions are easier to establish for pure materials where
thermal undercooling is the only control parameter. There-

fore we study crystal growth into a pure undercooled melt.
The basis of any experimental study of solidification must be
the in situ acquisition of 3D geometrical parameters and their
development with time. Seminal experiments have been per-
formed by the team of Glicksman. For publications in close
connection with our experiments see Refs. �1–3�. Experi-
ments with synchrotron radiation provide data out of small
volumina and from quasi-two-dimensional �2D� samples
only. We use xenon as a model substance for metals. Similar
to metals, rare gases have a low melting entropy and accord-
ing to Jackson’s rule both form rough solid-liquid interfaces
at atomic scale �4�. Xenon forms a simple liquid, it is chemi-
cally inert, and crystallizes in a fcc structure. Xenon is trans-
parent and therefore we use optical imaging techniques for in
situ observations of growing crystals. Physical properties of
xenon can be found in Ref. �5�. The experimental setup is
presented in Sec. III. The methods developed for a quantita-
tive analysis of the experimental data are described in Sec.
IV.

Dendrites are one of the most frequently observed shapes
formed during solidification in nature. The word dendrite
derives from the Greek word “dendron,” meaning “tree” or
“branch.” Dendrites are treelike structures with a pronounced
orientational order �Fig. 1�. The smooth main tip of most
metal and rare gas crystals grows parallel to �100� direction
�6�. Along the growing crystal four fins develop and their
amplitudes increase with distance from the tip, thus leading
to the typical fourfold symmetry of the cross section of a
xenon dendrite. The contour of the tip can be described by

z = a�x�5/3, �1�

where the crystal grows along the z direction. x and z are
scaled by the radius of curvature R of the dendrite tip �tip
radius�, which is the typical length scale of a dendrite. Singer
proposed a generalized method to measure the tip radius �7�.
In the following all lengths are scaled by R.

At the distance of a few R behind the tip the fins become
unstable upon thermal fluctuations and small tips begin to*Electronic address: owittwer@solid.phys.ethz.ch
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grow at the ridges of the fins. Further away from the dendrite
tip, small sidebranch tips develop to individual sidebranches.
Since the melting temperature of a convex and/or concave
surface is lower and/or higher than the equilibrium melting
temperature of a plane interface �Gibbs-Thomson effect �4��,
a heat flow between differently curved regions is induced,
leading to the growth of big sidebranches on the expense of
small ones, a process which is called coarsening �Fig. 2�.
Larger sidebranches “survive” while the growth of smaller
sidebranches is suppressed. Sidebranches are called active if
they are not suppressed by other sidebranches during the
time of observation. With increasing size active sidebranches
develop to dendrites with a next generation of sidebranches,
leading to the typical treelike structure �Fig. 1�. Several phe-
nomenological relationships between tip radius, length of the
contour, and projection area have been found for stationary
growing dendrites �5,7–10�.

In most studies up to now where dendritic growth was
studied in a stationary state, selective amplification of ther-
mal noise is found to be the origin of sidebranching. Bisang
and Bilgram �11,12� found quantitative agreement between
the measured sidebranch amplitude of xenon dendrites and

the analytical predictions for a nonaxisymmetric needle crys-
tal �13�. It has been demonstrated by Singer �14� that the
cross section of xenon dendrites is crosslike whereas the
crosssection of SCN dendrites can be approximated much
better by an axisymmetric Ivantsov dendrite. In addition to
these noise induced sidebranches �type N�, also other types
of sidebranches have been observed in experiments. In
quasi-2D experiments �15� localized heat pulses were ap-
plied to succinonitrile dendrite tips during directional solidi-
fication experiments. These perturbations led to sidebranches
growing closer to the tip than the noise-generated side-
branches. Also convective flow can significantly influence
the amplitude of sidebranches. The initiation of dominant
sidebranches by pressure changes has been reported in Ref.
�16�. All these sidebranches have in common that they were
induced by macroscopic perturbations. Therefore we will call
them “type P” sidebranches. In this work we report on meth-
ods that allow for a quantitative description of sidebranches.
In Sec. V A the onset and amplitude of sidebranches of xe-
non dendrites will be discussed: The amplitudes of type N
sidebranches as a function of distance z behind the tip will be
compared to the analytical predictions in Sec. V A 1. In Sec.
V A 2 the effect of macroscopic perturbations leading to type
P sidebranches is investigated. The characteristics of active
type N and type P sidebranches will be analyzed in Sec. V B
according to their tip positions at larger distances behind the
dendrite tip. A characterization of the envelope of a dendrite
will be given in Sec. V C.

II. PHYSICAL FRAMEWORK

For a quantitative description of the dendrite problem the
following assumptions are made:

�1� The crystal grows into an infinitely large environment
of undercooled melt. Therefore no other boundaries apart
from the solid-liquid interface are of importance. This
growth geometry is called free growth.

�2� At the beginning of the experiment the entire volume
of the melt is at a homogeneous initial temperature T� below
the equilibrium melting temperature T��Tm.

�3� The thermal diffusivities of the liquid and the solid
are the same, Dth,l=Dth,s=D �symmetrical model�.
The propagation of a solid-liquid interface is described by
the classical Stefan problem �17�. The interface is assumed to
be close to the thermodynamic equilibrium melting tempera-
ture Tm. Latent heat is set free at the interface. Heat transport
is described by the diffusion equation

�u

�t
= D�2u , �2�

where u is the dimensionless thermal diffusion field around
the crystal proportional to the deviation from the initial tem-
perature,

u =
T − T�

L/cp,l
�3�

with the local temperature T.
The energy conservation condition at the moving interface

leads to the continuity equation

FIG. 2. Coarsening in dendritic growth. Contours of growing
sidebranches at selected times. At the beginning �t=0 s�, small side-
branches have developed at the ridge of a dendrite fin. At 10 s later
the growth of the middle tip �indicated by the arrow� is suppressed
by its nearest neighbors. After another 20 s the small tip has com-
pletely been “eaten up” by remelting. Also the gaps between the
sidebranches have been filled up.

FIG. 1. A typical xenon dendrite with a pronounced orienta-
tional order and the typical fourfold symmetry at the tip region.
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vn = D���u�solid − ��u�liquid� · n̂ , �4�

where n̂ is the unit vector normal to the interface directing
into the liquid, and vn=v · n̂ is the component of the growth
velocity normal to the interface.

At a curved growing interface the melting temperature
deviates from the thermodynamic equilibrium melting tem-
perature. Thus the generalized Stefan problem can be written
as

�u�interface = � − �vn − d� , �5�

where �vn represents the kinetic effect which relates the
growth velocity to the undercooling at the interface, with �
the kinetic coefficient. The Gibbs-Thomson effect �4� con-
tributes to the term d�. For a convex surface the local cur-
vature � is positive. Both the capillary length d and the ki-
netic coefficient � can be anisotropic. For materials
crystallizing in a cubic symmetry �fcc�, the surface tension is
assumed to have a fourfold symmetry. In this case the capil-
lary length can be written as

d = d��� = d0�1 − 	4 cos�4��� , �6�

where 
4 is the anisotropy strength and � the angle between
the interface normal and a given crystallographic direction.
The capillarity or average of the capillary length d0 is a ma-
terial property and is defined as

d0 =
�slTmcp,l

L2 , �7�

where �sl is the isotropic part of the interfacial free energy.
d0 is typically of the order Å.

The temperature distribution around a dendrite tip is given
in Fig. 3 schematically. The dashed lines indicate the iso-
therms. The thermal gradient in the melt is highest at the
dendrite tip and it decreases with increasing distance from
the tip. Close to the dendrite interface the temperature is near
the melting temperature Tm, while far away it is close to the
initial temperature T�.

III. EXPERIMENTAL SETUP

The cryostat �Fig. 4� consists of a double-walled glass
vessel, which is filled with isopentane, and an outer vessel
filled with liquid nitrogen, serving as cooling substance. Iso-
pentane is used as thermostating medium. It is liquid over a
wide temperature range and it is transparent. An adjustable
helium gas atmosphere allows to control the heat flux from
the isopentane to the nitrogen. A stirrer in the isopentane
produces a laminar flow to achieve a homogenous tempera-
ture distribution around the growth vessel. The temperature
of the isopentane is measured by means of platinum resistors
�Pt 100� and controlled by electrical heaters and a propor-
tional integral differential controller �PID�.

FIG. 3. Isotherms around a dendrite tip. The thermal gradient in
the melt is highest at the dendrite tip and it decreases with increas-
ing distance from the tip. Sidebranches initiated close to the tip
grow faster than sidebranches initiated some distance behind the tip.

FIG. 4. Experimental setup: �1� Growth vessel with the capil-
lary; �2� periscope; �3� illumination system; �4� heat bath �isopen-
tane�; �5� tube to provide laminar flow in the heat bath; �6� stirrer;
�7� mass of stainless steel to reduce the vibrations of the stirrer; �8�
liquid nitrogen; �9� adjustable helium gas atmosphere to control the
cooling power; �10� heater; �11� temperature sensor; �12� combined
rotary and linear motion drive to rotate and lift the capillary; �13�
zoom lens �1� –7� �; �14� digital CCD camera; �15� output to the
computer interface and power supply for the camera; �16� high
precision linear positioning system; �17� field lens.

THREE-DIMENSIONAL XENON DENDRITES:… PHYSICAL REVIEW E 74, 041604 �2006�

041604-3



The growth vessel is immersed in the isopentane and
filled with highly purified xenon �99.999999%�. The uniform
temperature T� of the melt at the beginning of a growth
experiment is in the range of 30 mK
�T
230 mK below
the triple point temperature Tt=161.3897 K, corresponding
to an undercooling of about 10−3
�
10−2 in dimensionless
units. The temperature of the liquid xenon is measured by
another Pt 100 resistor and can be controlled to ±10−4 K.

We use the capillary injection technique �18� to grow
three-dimensional xenon crystals from pure undercooled
melt. A thin capillary is reaching into the growth vessel �Fig.
5�. The volume of the growth vessel is about 100 cm3 which
provides conditions compatible with free growth. A detailed
discussion of typical length scales and the proof that the
assumption of “free growth” is given has been presented in
Ref. �19�. By means of a Peltier element above the top of the
capillary we locally achieve an undercooling sufficient to
induce the nucleation of a seed. The crystal grows down
through the capillary and at the end of the capillary it starts
to grow freely into the surrounding melt with the uniform
temperature T�. The long and thin geometry of the capillary
ensures that only one crystal leaves the capillary. All experi-
ments are performed with single crystals.

At the beginning of free growth a cluster of small tips
starts to evolve around the tip of the capillary. After a tran-
sient state typically five dendrites develop and start to grow
freely along the directions of the crystallographic axes.

We use a self-built optical system for the in situ observa-
tion of the growing crystal. It consists of two periscopes, one
to illuminate the crystal by means of a spatially homoge-
neous cold light source, and a second one to capture images
by a high resolution digital CCD camera �1280
�1024 pixels at 12 Bit� at discrete time steps �1–5 s� and at
the same time by an analog PAL-SVHS video recorder
�25 fps at 768�576 pixels� for continuous recording of the
growth. The optical resolution of the periscope was tested to
be 1.22 �m.

The capillary is fitted to a feedthrough mechanism which
provides a linear drive along the z axis and allows to turn the
crystal. Using a high precision linear positioning system we
can move the camera in lateral direction �x axis� to position
the crystal in the field of view and along the optical axis �y
axis� to focus the crystal. When a crystal grows, there is
always one main dendrite with its growth direction close to
the downward vertical direction. This branch can be ob-

served for a longer time than the other branches because the
capillary can be shifted in the z direction over several centi-
meters.

IV. METHODS

A. Image processing

The images of the crystals must be processed in order to
become accessible for a numerical data analysis. A first step
is the contour extraction. In a second step the contours must
be transformed back to the original proportions of the crys-
tal.

For contour extraction the contrast is enhanced. This is
done by a linear interpolation of the grey levels between two
boundaries called “lowcol” and “highcol.” All values equal
to or below lowcol or above highcol are set to black or white,
respectively. Then the images are filtered by convolution
with a Laplacian of a Gaussian �Marr-Hildreth operator�
�20�. Using a threshold strategy the filtered images are
searched for zero crossings resulting in edges that are 1 pixel
thick.

Since the transparent crystal is illuminated by a diffuse
light source from the rear, the image obtained from the crys-
tal is actually an image of the light source seen through the
crystal. Refraction of light at the crystal surface provides the
images in our experiments �Fig. 6�. The intensity of the light
that leaves the crystal and reaches the image sensor depends
strongly on the orientation of the crystal surface where light
is refracted. Regions of the crystal where light passes

FIG. 5. Three chamber system of the growth vessel: The crystal
grows in the middle chamber with a volume of about 100 cm3. The
left-hand and right-hand chambers contain optical systems for the in
situ observation of the growth.

FIG. 6. Two different images of the same dendrite: �a� One
symmetry plane is oriented to have maximum projection area in the
image plane and �b� the dendrite turned by about 45°.
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through the crystal without or with only small refraction ap-
pear white. Regions where the surface is parallel to the ob-
servation direction appear dark. Since the observed crystals
have complex shapes the images show many bright and dark
regions. Therefore not only the outside contour, but also
edges inside the crystal area found by the edge detection
technique described above. From all these edge lines the
longest one is considered to be the contour of the crystal. A
detailed description of the contour extraction procedure can
be found in Ref. �21�.

Sidebranches grow in the two symmetry planes which are
normal to each other and perpendicular to the growth direc-
tion of the main tip. They can be seen without geometrical
deformation if one symmetry plane is parallel to the object
plane of our periscope. The dendrites usually do not grow
along the direction of the capillary. Therefore these condi-
tions are not given in most cases. By turning the capillary
around the vertical axis we can orient two fins into the plane
perpendicular to the object plane of the periscope. After ori-
enting the crystal in this way, the sidebranches growing in
the plane perpendicular to the image plane appear as bright
spots. The structure of the sidebranches growing in the other
symmetry plane can still be seen although the projection is
not normal. Figure 6 shows two images of the same dendrite,
one in the maximum projection area orientation �a� and after
turning it about 45° �b�.

Since there is a nonvanishing angle between the growth
direction and the object plane, the images taken from these
projections do not show the dendrites in its original propor-
tions. In order to obtain contours with the original propor-
tions of the crystals they must be transformed back with a
transformation matrix. The values needed to calculate this
matrix are the angle �1 between the vertical axis and the
growth direction of the dendrite in the image that must be
transformed, and a second angle �2 between the vertical axis
and the growth direction of the dendrite in a second projec-
tion after turning the crystal 90° around the vertical axis.
Schematically the two projections of a dendrite with the two
angles are given in Fig. 7, left-hand side. After the transfor-
mation T��1 ,�2� the dendrite can be seen in its original pro-

portions �Fig. 7, right-hand side�. An example of a dendrite
with its contour and the contour rescaled and centered is
given in Fig. 8. A detailed description of this procedure can
be found in the Appendix.

B. Positions of tips

The main tip and the tips of active sidebranches are the
fastest moving points of a dendrite. They can be interpreted
as local maxima of the velocity of the moving crystal inter-
face. We use this property to automatically determine the
evolution of the tip positions.

We start from the contour SN of the last image and manu-
ally select the sidebranch tip points PN,j. This can also be
done automatically by selecting the points where the contour
has a local maximum in the curvature and where the curva-
ture is above a certain threshold.

Starting with the last contour �i=N� we find the preceding
points Pi−1,j by iteration and the condition

�Pi,j − Pi−1,j� = min
v	S

�Pi,j − v� . �8�

Figure 9 shows three contours and the arrows connecting the
positions of the tips.

C. Half-widths and sidebranch activity of the dendrite tip

For a transformed and centered dendrite contour the half-
width x�z , t� is defined as the absolute value of the horizontal
distance from the z axis to the contour at a given distance
from tip z and for a given t �Fig. 10�.

FIG. 7. Schematic of the back transformation. Left-hand side,
the projections of a dendrite that must be transformed, and a second
projection needed to calculate the transformation matrix T��1 ,�2�.
The angles �1 and �2 are taken between the vertical direction and
the growth direction of the two projections of the dendrite. Right-
hand side, the dendrite after transformation in its original propor-
tions. Details of the procedure are given in the Appendix.

FIG. 8. Image processing. �a� Dendrite with overlaid contour.
�b� Contour after transformation to the original proportions and
shifting the oriented contour to the origin of the coordinate system.
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Figure 11�a� shows a 2D plot of the two half-widths of a
contour sequence. Red �dark gray� and yellow correspond to
the minimum and to the maximum absolute values of x, re-
spectively. The half-width at a given distance from the tip
oscillates around its mean value. The increase of the ampli-
tude of these oscillations with z corresponds to the increasing
size of the sidebranches. In the plot sidebranches can be
identified with the bright sloped lines. These lines vanish
with decreasing distance from tip �small z�.

In order to make fluctuations at small z also visible, we
define the sidebranch activity x̃z�t� as the normalized ampli-
tude of x�z , t� around its mean value �x�z , t��t. Normalized
means that the values within a given z are divided by the
maximum absolute value for this z, limiting these values to
max�x̃z�t��=1. Plotting the sidebranch activity in a 2D plot
�Fig. 11�b�� reveals the fluctuations of the sidebranches at all

distances from the tip at full color range. Even small fluctua-
tions corresponding to the beginning of sidebranch growth
can be traced down to their first appearance. This allows us
to measure the distance behind the tip at which a sidebranch
starts to grow.

V. RESULTS

A. Onset and amplitude of sidebranches

In this paragraph we compare experimental results with
the predictions of the rigorous calculations of Brener et al.
�13,22�. Based on the mechanisms which initiate side-
branches we distinguish two types: type N sidebranches
which are initiated by the selective amplification of thermal
noise, and type P sidebranches which are initiated by mac-
roscopic perturbations of the dendrite tip.

1. Sidebranches induced by selective amplification
of thermal noise (type N)

The initiation of type N sidebranches has been studied in
some detail for axisymmetric dendrites, for a review see Ref.
�23�. An important step forward was made by Brener and

FIG. 9. �Color online� Tracing the positions of the sidebranch
tips: Beginning from a contour Si with known tip positions Pi,j, the
corresponding tip positions Pi−1,j of the preceding contour Si−1 can
be found by determining the point of Si−1 with the minimal distance
from point Pi,j.

FIG. 10. �Color online� Half-width x�z , t� of the right-hand side
of a dendrite contour.

FIG. 11. �Color online� Half-width and sidebranch activity. �a�
Two-dimensional plot of the half-widths x�z , t� of a contour image
sequence. �b� Sidebranch activity x̃z�t� of the same sequence. It is
defined as the normalized amplitude of x�z , t� around its mean value
�x�z , t��t calculated separately for each z. Red/dark corresponds to
−1, yellow to 1.
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Temkin �13,22� who determined the shape of the tip and the
sidebranch amplitude of 3D non-axisymmetric crystals ana-
lytically. The sidebranch amplitude was found to be

ABT�z� = ��1
2�z��1/2 	 S̄ exp
2�5/3�9/10

3�3�*
z2/5� , �9�

where S̄2=2kBT2cp,lD / �L2vtipR
4� is the dimensionless noise

or fluctuation strength and �*=2Dd0 / �vtipR
2� the so-called

stability constant with the capillary length d0=�slcp,lTm /L2.
Where D, vtip, R, �sl, cp,l, Tm, L are the thermal diffusivity,
the tip velocity, the tip radius, the free energy of the solid-
liquid interface, the specific heat, the equilibrium melting
temperature and the latent heat of melting, respectively. The
material properties used to calculate the fluctuation strength

S̄ and the stability constant �* can be found in Ref. �5�. The
�T dependence of the tip radius and the tip velocity was
determined by Hürlimann �5�,

R = �5.2 ± 0.4� � 10−3�T−0.83±0.03,

vtip = �1.888 ± 0.086� � 10−1�T1.745±0.017, �10�

where R is given in �m, vtip in �m/s, and �T in K.
Bisang and Bilgram �11� compared the shape of the tip

and the amplitudes of sidebranches of experimentally grown
three-dimensional xenon dendrites with the predictions made
in Ref. �13�. They used the mean distance z̄sb between the tip
and the position where the sidebranches have a root-mean-
square amplitude

Aexp�z� = ���x�z,t� − �x�z,t���2� �11�

of about 1R. According to Brener and Temkin �13� this po-
sition behind the tip is

z̄sb�1R� 	
�27�*�5/4

25/2
5

3
�9/4 �ln S̄�5/2. �12�

z̄sb was found not to depend on undercooling and the mean
value was z̄sb=17.5±3 in units of R, which is in quantitative
agreement with the theory.

The plot of the sidebranch activity of a sequence reveals
whether the dendrite grows in a steady state or sidebranches
have been induced by macroscopic perturbations. The tip
shape of a dendrite growing in a steady state can be de-
scribed by a 5/3 power law deduced in Ref. �22�. Type N
sidebranches are silhouetted against the noise at about 3–7
tip radii R behind the tip. Figure 12 shows the sidebranch
activity x̃z�t� of a typical type N dendrite sequence �Sec.
IV C�, plotted in colors �from red=−1 to yellow= +1� vs
time t �horizontal axis� and distance from tip z �vertical axis�.
The upper part of the plot corresponds to the left-hand side
and the lower part to the right-hand side of the dendrite. We
analyzed about 30 sequences of dendrites grown in a steady
state. Sequences with sidebranches appearing at the tip �z
�3� have been excluded in this analysis. They will be ana-
lyzed in Sec. V A 2.

Figure 13�a� shows a linear plot of the sidebranch ampli-
tude Aexp�z� vs distance from tip z of a steady state dendrite

sequence. In order to compare this curve with the prediction
given in Eq. �9�, we rewrite this equation to

ln A�z�BT 	 ln S̄ +
2�5/3�9/10

3�3�*
z2/5. �13�

Plotting Aexp�z� on a logarithmic scale vs z2/5 �Fig. 13�b��, a
straight line denotes a linear dependence of ln A�z� on z2/5

FIG. 12. �Color online� Type N sidebranch initiation by noise:
Two-dimensional plot of the sidebranch activity x̃z�t� of a typical
dendrite. Values range from −1 �red/dark� to 1 �yellow�. The dashed
lines drawn at z=3 show the border where the first indications for
sidebranches can be observed.

FIG. 13. Root-mean-square amplitude Aexp�z� of type N side-
branches of a dendrite grown at �T=144 mK. The solid drawn lines
are ABT�z� calculated with the values of R and vtip from Eqs. �10�
and the dashed lines correspond to the uncertainties given in �10�.
�a� Dimensionless coordinates on a linear scale. �b� A�z� plotted on
a logarithmic scale vs z2/5 according to Refs. �13,22�.
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according to Eq. �13�. The proportionality is given by
2�5/3�9/10/ �3�3�*�. The solid line in these plots corresponds
to the theoretical value A�z�BT derived from the values R and
vtip from Eqs. �10� and the dashed lines enclose the regions
of uncertainties. We point out that we compare experimental
data directly with the rigorous calculations of Brener et al.
�13,22�. We do not analyze by means of a log-log plot, but
we plot the data in a z2/5 scale given by the theory. The
straight line in Fig. 13�b� is derived from theory. There are
no free parameters. Each of the points plotted in Fig. 13 is a
result of the analysis of 50 to 300 contours.

The tested sequences are within the limits of uncertain-
ties. The measured amplitudes are below 0.1R ��2 �m� for
z�7R. The noise level in this region is likely an artefact due
to the pixel-based contour extraction of the digital images
and does not depend on z. For a comparison, the root-mean-
square amplitude originated only by the discrete pixel grid is
given in Fig. 14. To generate this plot, a sequence of syn-
thetic contours with no sidebranches was produced. The
same tip radius was used as the radius of the sequence of
Figs. 13�a� and 13�b�. The contours were rendered at the
same pixel-resolution and the same calculations were applied
to the contours in order to get Aexp�z�.

2. Sidebranches induced by macroscopic perturbations (type P)

According to Ref. �15� we interpret the growth of side-
branches starting to grow immediately after the dendrite tip
as the result of perturbations. Such type P sidebranches can
also be induced by a mechanical shock to the system or
vibrations applied to the cryostat vessel. The sidebranch ac-
tivity of a dendrite sequence with type P sidebranches is
given in Fig. 15�a�. The half-widths xleft�z , t� and xright�z , t� at
7R �corresponding to about z=200 �m� are plotted vs time
in Fig. 15�b�. The vertical displacement of the tip around its
average steady state position as a function of time �ztip�t�
=z�t�−vtip t �perturbation shift� is plotted below. The t axis of
the x vs t plot has been shifted to the left-hand side by �t

=25 s, which corresponds to about �z=vtip�t
4.4R
�125 �m�. Both curves xleft�z , t� and xright�z , t� show large
fluctuations corresponding to the symmetric sidebranches
observed in the plot of the sidebranch activity given in Fig.
15�a�. They are similar to the perturbation shift observed
25 s earlier. The effect of the perturbation can be compared
to a local perturbation at z
7R−4.4R=2.6R �75 �m� be-
hind the tip.

Also convectional flow or uncontrolled perturbations can
lead to the growth of type P sidebranches. Figure 16�a�
shows three images of a dendrite where sidebranches began
to grow close to the tip. Figure 16�b� shows the sidebranch
activity of a similar sequence where sidebranches started to
grow at the tip at t=100 s. At about t=250 s the dendrites
returned to a steady-state mode where sidebranches became
again visible at about 5R.

B. Tip positions of sidebranches

In Fig. 17, selected shape and growth parameters charac-
terizing a dendrite are shown. The gray solid line is the con-

FIG. 14. Noise originating from pixel grid. Aexp�z� of synthetic
contours with no sidebranches. The synthetic contours were pro-
duced by projecting a curve of the form z=a�x�5/3 onto a pixel grid
�rounding the coordinates to integers�. The orientation and the po-
sitions of the curves, the pixel size and the tip radius correspond to
the values of the experimental contour sequence of Fig. 13�b�. The
finite values measured here result from irregular fluctuations origi-
nating in the principally limited representation of smooth curves in
a discrete pixel grid.

FIG. 15. �Color online� Type P sidebranches initiated by mac-
roscopic perturbations. �a� 2D plot of the sidebranch activity x̃z�t� of
a dendrite sequence with type P sidebranches. �b� The half-widths
xleft�z , t� and xright�z , t� at z=7R �corresponding to about 200 �m�
are plotted vs time �left-hand side, solid blue; right-hand side,
dashed red�. The vertical displacement of the tip �ztip�t� �perturba-
tion shift� is plotted below �the upper time scale is shifted against
the lower one by 25 s�. This corresponds to the time the crystal
takes to grow a distance of about 4.4R �125 �m�. The perturbations
can be compared to a local perturbation at z
7R−4.4R=2.6R
�75 �m� behind the tip.

O. WITTWER AND J. H. BILGRAM PHYSICAL REVIEW E 74, 041604 �2006�

041604-8



tour of a dendrite. The dendrite grows along the negative z
axis �100� with tip velocity vtip. A circle at the tip with a
radius according to the radius of curvature at the tip �tip
radius R� illustrates the length scale of the dendrite. The
sidebranches grow approximately along the direction of the
maximum thermal gradient at a velocity vsb. This growth
direction is characterized by �sb, it is not exactly parallel to
�010� or �001�. The positions of the sidebranch tips in a
coordinate system with its origin at the dendrite tip can be
characterized by the local slope msb�z�=�x�z� /�z�z� at a
given distance z behind the dendrite tip. We do not find any
evidence that the slope msb�z� depends on undercooling. This
is in agreement with the assumption that dendrites grown at
different undercoolings are similar. The mean opening angle
� describing the envelope of the dendrite is calculated from
the mean of the opening angles �sb of active sidebranches.
The mean opening angle �sb of a sidebranch is calculated
from the mean slope m̄sb of a sidebranch:

�sb = tan−1�m̄sb� . �14�

The analysis in Sec. V A is limited to a distance of some
tip radii behind the dendrite tip �13�. Using the tip positions
it is possible to characterize the growth of sidebranches at
much larger distances and to look at individual sidebranches.
In order to track tip positions it is necessary to have long
sequences where several sidebranches can be observed from
their first appearance until they have grown to the length of
many tip radii. Only active sidebranches will be taken into
account in the following.

To obtain first information we have selected three contour
sequences at undercoolings 129 mK
T�
218 mK
�0.0025
�
0.0042� and orientation angles below 19° that
show no significant asymmetry between the two sides in
sidebranch growth. In Fig. 18�a� traces of the tip positions of

the active sidebranches of these sequences are plotted. They
lie in two distinct bunches. The dashed line in Fig. 18�a�
corresponds to

x = 0.5z , �15�

which separates these two bunches. From 30 sidebranches
six grow significantly above this line while 24 grow below.
We have found in comparisons of sidebranch activities with
the sidebranch tip positions that sidebranches corresponding
to the upper bunch are all type P sidebranches, while side-
branches corresponding to the lower bunch are type N side-
branches.

In Fig. 18�b� the traces of the slopes of the tip positions
are plotted. The dashed line in Fig. 18�b� corresponds to the
constant slope m=0.5 of the dashed line plotted in Fig. 18�a�.
The theoretical dendrite tip shape without sidebranches is
given by Eq. �1�. Using the definition of the tip radius given
in Ref. �7�, the shape can be written in dimensionless coor-
dinates as

x = 22/5z3/5. �16�

The dotted line in Fig. 18�b� corresponds to the slope of this
curve. Again sidebranches of type N and type P lie in two
separate bunches that can be well distinguished. Type P side-
branches deviate from this line at about 5R behind the den-

FIG. 17. Selected shape and growth parameters characterizing
the growth of sidebranches far behind the dendrite tip. The growth
velocity vsb of the sidebranches and their orientation angle �sb are
determined from the sidebranch tip positions in the laboratory co-
ordinate system. The positions of the sidebranch tips in a coordinate
system with its origin at the dendrite tip can be characterized by the
slope msb�z�=�x�z� /�z�z� at the distance z behind the dendrite tip.
The dotted line traces the tip positions of this sidebranch relative to
the dendrite tip as it develops with time. The mean opening angle �
is the average of the opening angles �sb of the individual side-
branches, averaged over an interval �z1 ,z2�.

FIG. 16. �Color online� Transient from type N to type P. �a�
After a perturbation of a dendrite with a smooth tip, the dendrite
begins to produce sidebranches at the tip on all four fins. �b� Side-
branch activity of a dendrite with a smooth tip �type N� that begins
to produce sidebranches at the tip at t=100 s �type P� and again
becomes a dendrite with a smooth tip �type N� at about t=250 s.
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drite tip and the slopes quickly saturate at about 15R. Side-
branches lying in the lower bunch �type N� separate at about
10R and saturate approximately at 25R at the latest �see Fig.
18�. In the range 25–35R behind the tip the slopes of all
sidebranches remain approximately constant and we calcu-
lated the mean values from values within this interval.

In the following we take four additional sequences into
account which show a slight asymmetry between the down-
sided and the upsided sidebranches due to convection. The
undercooling and the orientation angles of the additional se-
quences are within the same limits as before. Although there
is an asymmetry we find the same separation of the type N
and type P sidebranch modes �Figs. 19�a� and 19�b��. This
gap is marked by an arrow. The gap indicates that there is not
a continuous transition from type N to type P but an insta-

bility. Again the m=0.5 line is a lower limit for type P side-
branches. Li and Beckermann �24� fitted the envelope of ac-
tive sidebranches of pure succinonitrile dendrites grown
under microgravity conditions by

x = 0.668z0.859. �17�

This curve corresponds to the dashed-dotted line plotted in
Fig. 19�a�, and its slope to the dashed-dotted line in Fig.
19�b�. It fits to the positions and the slopes of the slowest
type N sidebranches. Therefore it can be considered to be a

FIG. 18. �Color online� Symmetric sidebranches at small orien-
tation angles. �a� The positions x�z� of the sidebranches of three
different dendrites at undercoolings 129 mK
T�
218 mK
�0.0025
�
0.0042� have been superimposed. The angles �1 and
�2 of these selected sequences are below 19°. The positions of the
downsided �blue/dark� and the upsided �orange/bright� sidebranches
all lie in two bunches separated by the dashed line x=0.5z. In �b�
the slopes msb�z� of the positions x�z� are plotted against z. Low
values of the slopes correspond to low growth rates, high slopes to
high growth rates. The lines separate into two distinct sidebranch
types. The upper bunch corresponds to type P and the lower bunch
to type N sidebranches, separated by the dashed lines �constant
slope m=0.5�. The dotted line is the slope of a theoretical 5 /3
dendrite tip without sidebranches.

FIG. 19. �Color online� Two sidebranch modes for dendrites at
small orientation angles. �a� Superimposed sidebranch tip positions
of seven sequences at different undercoolings �129 mK
T�


218 mK� and angles �1 and �2 below 19°. The downsided side-
branches are plotted in blue �dark�, the upsided branches in orange
�bright�. Below the dashed line x=0.5z a gap separates type P side-
branches from type N sidebranches, which is marked in �b� by the
arrow. This is an experimental observation. We will be happy about
a theoretical discussion about this gap. The dotted curve is the
shape of an undisturbed dendrite tip. The dashed-dotted curve cor-
responds to the envelope obtained by Li and Beckermann. �b� Plots
of the slopes of sidebranch positions. Here the different types are
plotted in different colors: N in blue �dark� and P in orange �bright�.
The gap separating the two types is indicated by the arrow. On the
right-hand side the two distinct branches of type P and type N
sidebranches are plotted separately. At a larger z scale almost all
values of type P sidebranches are larger than 0.5 and all values of
type N sidebranches below 0.5.
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lower limit for the growth of type N sidebranches growing
downward. The data used by Li and Beckermann �24� have
also been analyzed by Giummarra et al. �2�. The data for the
x=�z� are collected in Table I. The slopes of almost all type
N sidebranches are slowly decreasing with distance from the
tip �Fig. 19�b�� whereas the slope of the type P sidebranches
remain constant or even increase.

Figures 19�a� and 19�b� show that the earlier a sidebranch
starts the faster it grows. The order of appearance corre-
sponds mostly to the order of tip speeds and the size of the
sidebranches. Sidebranches initiated close to the tip by per-
turbations �type P� grow faster than sidebranches initiated
some distance from the tip by thermal fluctuations �type N�.
This is because the thermal gradient in the melt is highest at
the dendrite tip and decreases with increasing distance from
the tip. Figure 3 illustrates the isotherms around a dendrite
tip.

The dashed line at 0.5 separates type P from type N side-
branches: Almost all type P sidebranches have a slope larger
than 0.5, while the slopes of all type N sidebranches are
below 0.5. Also the more the slope of a sidebranch after
saturation lies above or below 0.5 the more it will increase or
decrease with distance from the dendrite tip. Slopes being
close to 0.5 will stay almost constant at this level.

In Table II the mean values of the slopes �m̄sb�, the open-
ing angle � and the sidebranch orientation ��sb� are given. In
Ref. �25�, Kaufmann analyzed the sidebranch development
of xenon dendrites. In this work it was not distinguished
between type P and type N sidebranches. For a comparison
the mean values calculated from all active sidebranches are
listed in the following. The mean slope is found to be

�m̄sb�all = 0.47 ± 0.06, �18�

corresponding to the mean opening angle

� = 25 ° ± 3 ° . �19�

The mean orientation angle of the sidebranches is

��sb� = 10 ° ± 5 ° . �20�

These values are in agreement with the values found by
Kaufmann. This demonstrates the high degree of reproduc-
ibility of sidebranch behavior.

C. Envelope of a dendrite

The envelope of a dendrite can be defined as the line
connecting the outermost points described by all centered
contours of a dendrite. It is the smallest shape including all
centered contours of a dendrite. The envelope of a dendrite
can be described by three regions �Fig. 20�:

A first region �I� is the tip region where no sidebranches
appear. The shape of the tip can be described by the power
law given in Eqs. �1� and �16�. The results from Sec. V B
show that the distance z1 where sidebranches begin to influ-
ence the envelope of a dendrite, ranges from 5R for type P
sidebranches to about 10R for type N sidebranches.

After sidebranches become visible at some distance be-
hind the tip, the slopes of their tip positions are relatively
constant over a large interval of distances behind the dendrite
tip as shown in Figs. 18�b� and 19�b�. This region of the
envelope �II� can be described by a straight line. The detailed
shape of the crossing between these two regions has not been
determined. For sidebranches at small orientation angles and
taking all sidebranches into account, region II of the enve-
lope is described by

x = mall,maxz 	 0.6z . �21�

If we consider only type N sidebranches to contribute to the
envelope, it is described well by

x = mN,maxz = 0.5z . �22�

TABLE I. Comparison of the fitting parameters x=�z� of the envelope of succinonitrile �SCN� dendrites grown under convection-free
�cf� microgravity conditions �24�, of pivalic acid �PVA� �2� and SCN dendrites �3� grown under convection-free �cf� and diffuso-convective
�dc� conditions. We compare our data to the values fitted by Li and Beckermann.

Reference
Li et al. �24�

SCN, cf

Giummarra et al. �2� Corrigan et al. �3�

PVA, cf PVA, dc SCN, cf SCN, dc

� 0.668 0.87±0.26 0.65±0.19 0.603 0.519

� 0.859 0.73±0.09 0.82±0.09 0.852 0.920

TABLE II. The mean values corresponding to Fig. 19. �m̄sb� is the mean slope, � the mean opening angle and ��sb� the mean sidebranch
orientation angle of the active sidebranches. The means have been calculated from the values in the interval 25–35R behind the tip. n is the
number of contours.

Selection �m̄sb� � ��sb� n

All 0.47±0.06 25° ±3° 10° ±5° 74

Type P 0.54±0.05 28° ±3° 9° ±5° 21

Type N 0.44±0.04 24° ±2° 11° ±5° 53
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At larger distances growth velocity of the most dominant
sidebranches slowly increases and they transform into indi-
vidual dendrites, accompanied by the onset of tertiary side-
branches. The velocities of the sidebranches do not exceed
the velocity of a steady state dendrite tip �vsb
vtip�, and
therefore the maximum slope is limited by 1. For the ana-
lyzed dendrites we estimate z2 to be in the range 30R
z2

50R.

VI. DISCUSSION

A. Onset and amplitude of sidebranches

Our experimental results allow the characterization of
dendrites by three parameters: �i� The distance from the den-
drite tip where sidebranches start to grow, �ii� the amplitude
of sidebranches as a function of the distance from the tip,
�iii� the symmetry of sidebranches.

Using these parameters we can clearly identify two types
of sidebranches: Sidebranches that are initiated by selective
amplification of thermal noise �type N� and a new type of
sidebranches, initiated by macroscopic perturbations �type
P�.

Type N sidebranches start to grow 3–7 tip radii behind the
tip �Fig. 12� and the sidebranches growing at the four fins are
not correlated. The amplitude for type N sidebranches as a
function of the distance from the dendrite tip �Eq. �9�� has
been predicted by Brener and Temkin �13�. Our results agree
without any fitting parameters. We have verified that the
sidebranch amplitude grows exponentially to z2/5 �Fig. 13�.
This result confirms the selection of S̄2 and �*.

Type P sidebranches are initiated by macroscopic pertur-
bations �e.g., by vibrations applied to the vessel of the cry-
ostat�. They start to grow at the tip and their amplitude is
significantly higher than type N sidebranches. The growth of
type P sidebranches is symmetric at the four fins �Fig. 15�.

These results show that the initial conditions determine
the growth of sidebranches �see also Ref. �26��.

B. Tip positions of sidebranches and the envelope of a dendrite

It was found that type P sidebranches can be well distin-
guished from type N sidebranches: A gap in the plot of the
slopes clearly separates the two types �Fig. 19�b��. Type P
sidebranches separate from the surface of a dendrite �Eq. �1��
at about 5R and a saturation of the slopes is observed at
about 15R. Type N sidebranches separate at about 10R and
the slopes saturate at 25R at the latest.

For the mean values of the slopes of type P sidebranches
we find msb,P�z��0.5 and for type N sidebranches msb,N�z�

0.5. The line x=0.5z is found to be an upper limit for the
growth of type N sidebranches and a lower limit for type P
sidebranches �Fig. 19�a��. This allows to distinguish quanti-
tatively between undisturbed and disturbed dendrites.

The curve describing the envelope of pure succinonitrile
dendrites grown under microgravity conditions �Eq. �17��
obtained by Li and Beckermann �24� is found to be a lower
limit for type N sidebranches �Fig. 19�a��. This means that all
active sidebranches observed in our experiments grow at
least as fast as sidebranches of dendrites grown under micro-
gravity conditions. Natural convection acts as an accelerator
for downward growing sidebranches. The upper limit for
downward growing type N sidebranches is given by x

0.5z.

The envelope of a dendrite �Fig. 20� can be described by
three regions according to the three sidebranch growth re-
gimes: �I� a tip region with no apparent sidebranches, where
the envelope is described by the 5/3 power law, �II� a region
where sidebranches grow at a constant velocity vsb	0.5vtip,
corresponding to a slope of the envelope of about 0.5 and an
opening angle �	 tan−1�0.5�	26.57°, and �III� a third re-
gion where sidebranches become individual sidebranches.
The maximum slope of the third region is limited by the
maximum velocity of sidebranches vsb
vtip. This leads to a
maximum slope of msb,max=1, corresponding to �=45°.

For an explanation of the ratio between the sidebranch tip
velocities and the dendrite tip velocity of vsb /vtip	0.5, we
consider the following arguments: Sidebranches in 3D grow
at the ridges of the dendrite fins side by side. Dissipation of
latent heat released by the sidebranches is limited in the re-
gions where other sidebranches grow. A 3D dendrite can be
compared with a stack of 2D dendrites growing perpendicu-
lar to the direction of the main tip. Therefore the growth
conditions under which sidebranches grow can be compared
to the growth of a dendrite in two dimensions. Growth of an
interface is limited mainly by the diffusion of latent heat
characterized by Laplace’s equation, whose radial solutions
are of the form rN, with N the dimension. The latent heat
condition �Eq. �4�� implies that the normal velocity is pro-
portional to the gradient, or NrN−1. Comparing this term at
the crystal surface and assuming an identical radius R for
N=2 with N=3, one has the ratio of 2 /3	0.67. This heuris-
tic examination suggests that the tip velocity in 2D should be
about 0.67 times that of a 3D system, which is higher than
the ratio found for type P sidebranches ��m̄sb�P	0.54� and

FIG. 20. Schematic of the envelope of dendritic growth. One
can distinguish three different regions: �I� The dendrite tip region is
described by a power law x̂=aẑ3/5. �II� The region where the side-
branch tip velocities are approximately constant, and �III� the region
where the largest sidebranches become freely growing dendrites.
The position z1 at the border between �I� and �II� ranges from about
3R for type P sidebranches to about 20R for type N sidebranches.
The border between �II� and �III� is not sharp and varies from den-
drite to dendrite. For the analyzed dendrites we estimate z2 to be in
the range 30R–50R.
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for all sidebranches ��m̄sb�all	0.47�. In Refs. �27,28� Altun-
das and Caginalp studied the growth of succinonitrile den-
drite in two and three dimensions using a phase field model.
For the velocity of the main dendrite tip a ratio of the 2D to
the 3D system was found to be 0.53, which is close to our
observations.
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APPENDIX: CONTOUR BACK TRANSFORMATION

We start with a crystal described by the vectors
�v1 ,v2 ,v3�, where v3 corresponds to the growth direction of
the main tip and v1 and v2 to the growth direction of the
sidebranches �see Fig. 21�. The vectors are parallel to the
observer’s coordinate system given by �e1 ,e2 ,e3�, where e3

is parallel to the direction of the capillary, −e1 is parallel to
the direction of observation and the plane spanned by e2 and
e3 is parallel to the optical object plane.

By successively applying the three rotational matrices

R� = �cos � − sin � 0

sin � cos � 0

0 0 1
�, R� = �1 0 0

0 cos � − sin �

0 sin � cos �
�

and R� = �cos � − sin � 0

sin � cos � 0

0 0 1
� ,

the crystal is oriented in space,

�v̂1, v̂2, v̂3� = R�R�R��v1,v2,v3� ,

where R�, R�, and R� are rotations of �, �, and � around e3,
e1, and e3, respectively.

A projection matrix

P = �0 1 0

0 0 1
�

is applied to project the oriented crystal onto the image plane
�see Fig. 22�,

�v̄1, v̄2, v̄3� = P�v̂1, v̂2, v̂3� .

The combination of these transformations can be written
as M = PR�R�R�. The whole transformation is described by

�v̄1, v̄2, v̄3� = M�v1,v2,v3� ,

which leads to the projected vectors

v̄1 = 
sin � cos � + cos � cos � sin �

sin � sin �
� ,

v̄2 = 
− sin � sin � + cos � cos � cos �

sin � cos �
� ,

FIG. 21. Orientation of a three-dimensional dendrite. Starting from a dendrite oriented in the observer’s coordinate system we apply three
rotations: � around the vertical axis �z axis�, � around the observation direction �y axis� and again � around the z axis. The angle � can be
chosen by turning the capillary. In our experiments � is chosen such as that one symmetry plane is normal to the image plane and the other
one appears with a maximum projection area. This leads to the conditions �3=�1+180° and �4=�2+180°.

FIG. 22. Projection of a dendrite to the image plane.
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v̄3 = 
− sin � cos �

cos �
� .

The condition of one symmetry plane being orthogonal to
the image plane is identical to the condition v̄1 � v̄3 or v̄2 � v̄3
�see Fig. 21�. Mathematically these conditions can be written
as v̄11/ v̄12= v̄31/ v̄32 and v̄21/ v̄22= v̄31/ v̄32, respectively. This
condition is satisfied for four different angles �, where �3
=�1+180° and �4=�2+180°. It follows

tan �1 = −
tan �

cos �
, �A1�

tan �2 =
1

cos � tan �
. �A2�

Resolving Eqs. �A1� and �A2� to tan � and setting them
equal leads to

cos2 � =
− 1

tan �1 tan �2
. �A3�

The corresponding angles �1 and �2 for the two cases ��1
and �2� are defined as the angles between the vertical axis
and the projected vector v̄3. This leads to the relations

tan �1 =
− v̄31

v̄32

=
sin � cos �1

cos �

and

tan �2 =
− v̄31

v̄32

=
sin � cos �2

cos �
,

which is equal to

tan �1 = cos �1 tan � , �A4�

tan �2 = cos �2 tan � . �A5�

Inserting

cos �1/2 =� 1

1 + tan2 �1/2

into Eqs. �A4� and �A5� and reforming leads to

tan �1 = ±� tan2 �

tan2 �1
− 1, �A6�

tan �2 = ±� tan2 �

tan2 �2
− 1. �A7�

Inserting Eqs. �A6� and �A7� into Eq. �A3� leads to an
implicit equation including only �, �1, and �2,

cos2 � ��
 tan2 �

tan2 �1
− 1�
 tan2 �

tan2 �2
− 1� + 1 = 0.

This is a quadratic equation with x=cos2 � that can be writ-
ten as

Ax2 + Bx + C = 0,

with

A = �a + 1��b + 1� ,

B = �a�b + 1� + �a + 1�b� ,

C = ab − 1,

and where

a =
1

tan2 �1
and b =

1

tan2 �2
.

The solution is

� = ���1,�2� = arccos�− B − �B2 − 4AC

2A
. �A8�

Identifying Eq. �A1� with Eq. �A6� leads to

� = arctan� tan2�

tan2 �1
− 1. �A9�

For a unique identification of �1 and �2 we assume �, �, �1,
and �2 to be positive.

From Eqs. �A1� and �A2� �1 and �2 can still have two
different values,

�1 = � arctan
−
tan �

cos �
� + � ,

arctan
−
tan �

cos �
� + 2� ,�

�2 = �arctan
 1

cos � tan �
� ,

arctan
 1

cos � tan �
� + � .� .

Reforming Eqs. �A4� and �A5� leads to

�1 = � arccos
 tan �1

tan �
� ,

2� − arccos
 tan �1

tan �
� ,�

�2 = � arccos
 tan �2

tan �
� ,

2� − arccos
 tan �2

tan �
� .�

Comparing the intervals of the solutions of the above equa-
tions leads to
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�1 = �arctan
−
tan �

cos �
� + ���1 � 0 ° ,

arctan
−
tan �

cos �
� + 2���1 � 0 ° ,� �A10�

�2 = �arctan
 1

cos � tan �
���2 � 0 ° ,

arctan
 1

cos � tan �
� + ���2 � 0 ° ,� �A11�

depending on the signs of �1 and �2.
Using Eqs. �A8�–�A10�, the angles �, �, and �=�1 can

be calculated from the two angles �1 and �2.

The matrix M̄ used for transforming �v2 ,v3� to �v2 ,v3� is

M̄ = �− sin � sin � + cos � cos � cos � − sin � cos �

sin � cos � cos �
� .

In the special case of �=�1 described above �one symmetry
plane normal to the image plane� the inverse matrix T

=M̄−1 is

T =
1

D
� − cos � − sin � cos �

sin � cos � sin � sin � − cos � cos � cos �
�

with D=det M̄ =cos � sin � sin �−cos � cos �. T maps v2
and v3 to e2 and e3, respectively. This is the matrix that
transforms back the projected crystal to its original propor-
tions,

�v2,v3� = T�v2,v3� .

As shown schematically in Fig. 23 a back transformation
is limited to a simple rotation if only the angle �1 is known.
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FIG. 23. If only the first angle �1 is known, only a rotation is
applied to orientate the contours parallel to the coordinate system.
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